6 research outputs found

    Investigating the Impact of Min-Max Data Normalization on the Regression Performance of K-Nearest Neighbor with Different Similarity Measurements

    Get PDF
    K-nearest neighbor (KNN) is a lazy supervised learning algorithm, which depends on computing the similarity between the target and the closest neighbor(s). On the other hand, min-max normalization has been reported as a useful method for eliminating the impact of inconsistent ranges among attributes on the efficiency of some machine learning models. The impact of min-max normalization on the performance of KNN models is still not clear, and it needs more investigation. Therefore, this research examines the impacts of the min-max normalization method on the regression performance of KNN models utilizing eight different similarity measures, which are City block, Euclidean, Chebychev, Cosine, Correlation, Hamming, Jaccard, and Mahalanobis. Five benchmark datasets have been used to test the accuracy of the KNN models with the original dataset and the normalized dataset. Mean squared error (MSE) has been utilized as a performance indicator to compare the results. It’s been concluded that the impact of min-max normalization on the KNN models utilizing City block, Euclidean, Chebychev, Cosine, and Correlation depends on the nature of the dataset itself, therefore, testing models on both original and normalized datasets are recommended. The performance of KNN models utilizing Hamming, Jaccard, and Mahalanobis makes no difference by adopting min-max normalization because of their ratio nature, and dataset covariance involvement in the similarity calculations. Results showed that Mahalanobis outperformed the other seven similarity measures. This research is better than its peers in terms of reliability, and quality because it depended on testing different datasets from different application fields

    Optimizing the Flexural Strength of Beams Reinforced with Fiber Reinforced Polymer Bars Using Back-Propagation Neural Networks

    Get PDF
    The reinforced concrete with fiber reinforced polymer (FRP) bars (carbon, aramid, basalt and glass) is used in places where a high ratio of strength to weight is required and corrosion is not acceptable. Behavior of structural members using (FRP) bars is hard to be modeled using traditional methods because of the high non-linearity relationship among factors influencing the strength of structural members. Back-propagation neural network is a very effective method for modeling such complicated relationships. In this paper, back-propagation neural network is used for modeling the flexural behavior of beams reinforced with (FRP) bars. 101 samples of beams reinforced with fiber bars were collected from literatures. Five important factors are taken in consideration for predicting the strength of beams. Two models of Multilayer Perceptron (MLP) are created, first with single-hidden layer and the second with two-hidden layers. The two-hidden layer model showed better accuracy ratio than the single-hidden layer model. Parametric study has been done for two-hidden layer model only. Equations are derived to be used instead of the model and the importance of input factors is determined. Results showed that the neural network is successful in modeling the behavior of concrete beams reinforced with different types of (FRP) bars

    An Investigation on Disparity Responds of Machine Learning Algorithms to Data Normalization Method

    Get PDF
    Data normalization can be useful in eliminating the effect of inconsistent ranges in some machine learning (ML) techniques and in speeding up the optimization process in others. Many studies apply different methods of data normalization with an aim to reduce or eliminate the impact of data variance on the accuracy rate of ML-based models. However, the significance of this impact aligning with the mathematical concept of the ML algorithms still needs more investigation and tests. To identify that, this work proposes an investigation methodology involving three different ML algorithms, which are support vector machine (SVM), artificial neural network (ANN), and Euclidean-based K-nearest neighbor (E-KNN). Throughout this work, five different datasets have been utilized, and each has been taken from different application fields with different statistical properties. Although there are many data normalization methods available, this work focuses on the min-max method, because it actively eliminates the effect of inconsistent ranges of the datasets. Moreover, other factors that are challenging the process of min-max normalization, such as including or excluding outliers or the least significant feature, have also been considered in this work. The finding of this work shows that each ML technique responds differently to the min-max normalization. The performance of SVM models has been improved, while no significant improvement happened to the performance of ANN models. It is been concluded that the performance of E-KNN models may improve or degrade with the min-max normalization, and it depends on the statistical properties of the dataset

    Gender Prediction of Journalists from Writing Style

    Get PDF
    Web-based Kurdish media have seen a tangible growth in the last few years. There are many factors that have contributed into this rapid growth. These include an easy access to the internet connection, the low price of electronic gadgets and pervasive usage of social networking. The swift development of the Kurdish web-based media imposes new challenges that need to be addressed. For example, a newspaper article published online possesses properties such as author name, gender, age, and nationality among others. Determining one or more of these properties, when ambiguity arises, using computers is an important open research area. In this study the journalist’s gender in web-based Kurdish media determined using computational linguistic and text mining techniques. 75 web-based Kurdish articles used to train artificial model designed to determine the gender of journalists in web-based Kurdish media. Articles were downloaded from four different well known web-based Kurdish newspapers. 61 features were extracted from each article; these features are distinct in discriminating between genders. The Multi-Layer Perceptron (MLP) artificial neural network is used as a classification technique and the accuracy received were 76%

    Design and Construction of Zana Robot for Modeling Human Player in Rock-paper-scissors Game using Multilayer Perceptron, Radial basis Functions and Markov Algorithms

    Get PDF
    In this paper, the implementation of artificial neural networks (multilayer perceptron [MLP] and radial base functions [RBF]) and the upgraded Markov chain model have been studied and performed to identify the human behavior patterns during rock, paper, and scissors game. The main motivation of this research is the design and construction of an intelligent robot with the ability to defeat a human opponent. MATLAB software has been used to implement intelligent algorithms. After implementing the algorithms, their effectiveness in detecting human behavior pattern has been investigated. To ensure the ideal performance of the implemented model, each player played with the desired algorithms in three different stages. The results showed that the percentage of winning computer with MLP and RBF neural networks and upgraded Markov model, on average in men and women is 59%, 76.66%, and 75%, respectively. Obtained results clearly indicate a very good performance of the RBF neural network and the upgraded Markov model in the mental modeling of the human opponent in the game of rock, paper, and scissors. In the end, the designed game has been employed in both hardware and software which include the Zana intelligent robot and a digital version with a graphical user interface design on the stand. To the best knowledge of the authors, the precision of novel presented method for determining human behavior patterns was the highest precision among all of the previous studies
    corecore